Soient a et b deux nombres réels positi tels que a > b. Montrer que : [tex] \sqrt{a + \sqrt{a { }^{2} - b {}^{2} } } = \frac{ \sqrt{2} }{2} ( \sqrt{a - b}
Mathématiques
ibtissam200
Question
Soient a et b deux nombres réels positi
tels que a > b.
Montrer que :
[tex] \sqrt{a + \sqrt{a { }^{2} - b {}^{2} } } = \frac{ \sqrt{2} }{2} ( \sqrt{a - b} + \sqrt{a + b}) [/tex]
s'il vous plait pouvez vous m'aider pour cette question ??
tels que a > b.
Montrer que :
[tex] \sqrt{a + \sqrt{a { }^{2} - b {}^{2} } } = \frac{ \sqrt{2} }{2} ( \sqrt{a - b} + \sqrt{a + b}) [/tex]
s'il vous plait pouvez vous m'aider pour cette question ??
1 Réponse
-
1. Réponse Svant
on eleve au carre l'expression suivante :
[tex] {( \frac{ \sqrt{2} }{2}( \sqrt{a - b} + \sqrt{a + b} )) }^{2} = \frac{1}{2} (\sqrt{a - b} ^{2} + 2\sqrt{a - b} \times \sqrt{a + b} + \sqrt{a + b} ^{2}) = \\ \frac{1}{2} (2a + 2\sqrt{a - b} \times \sqrt{a + b} ) = \\ a + \sqrt{a - b} \times \sqrt{a + b} = \\ a + \sqrt{a { }^{2} - b {}^{2} }[/tex]
donc en prenant la racine carrée on a bien
[tex] \sqrt{a + \sqrt{a { }^{2} - b {}^{2} } } = \frac{ \sqrt{2} }{2} ( \sqrt{a - b} + \sqrt{a + b}) [/tex]