Mathématiques

Question

Pouvez-vous m'aider à résoudre ces opérations avec la méthode
svp​
Pouvez-vous m'aider à résoudre ces opérations avec la méthode svp​

1 Réponse

  • Réponse :

    Explications étape par étape

    (a/b)^n = a^n/b^n

    a^n/a^(-n) = a^(n+n) = a^(2n)

    a^n/a^p = a^(n-p)

    (a/b)^(-n) = (b/a)^n

    Bonjour

    A = (2/3)^5 x (3/2)^(-7) x (2/3)^(-4) x (3/2)^(-6)

    A = (2/3)^5 x (2/3)^7 x (3/2)^4 x (2/3)^6

    A = (2/3)^(5+7+6) x (3/2)^4

    A = (2/3)^18 x (3/2)^4

    A = 2^18 x 3^(-18) x 3^4 x 2^(-4)

    A = 2^(18-4) x 3^(4-18)

    A = 2^14 x 3^(-14)

    A = (2/3)^14

    B = (2^3)^(-5) x 8^4 x 4^2

    B = 2^(3*(-5)) x (2^3)^4 x (2^2)^2

    B = 2^(-15) x 2^(3*4) x 2^(2*2)

    B = 2^(-15) x 2^12 x 2^4

    B = 2^(-15+12+4)

    B = 2^1

    B = 2

    C = [(5^3 x 7^(-1))/(3 x 2^(-2))]^(-2) x (25^3 x 9^(-1))/(49 x 16^(-1))

    C = 5^(3*(-2)) x 7^(-1*(-2)) x 3^(-1*(-2)) x 2^(2*(-2)) x (5^2)^3 x 9^(-1) x 7^(-2) x (4^2)

    C = 5^(-6) x 7^2 x 3^2 x 2^(-4) x 5^(2*3) x (3^2)^(-1) x 7^(-2) x (2^2)^2

    C = 5^(-6) x 7^2 x 3^2 x 2^(-4) x 5^6 x 3^(-2) x 7^(-2) x 2^4

    C = 5^(6-6) x 7^(2-2) x 3^(2-2) x 2^(4-4)

    C = 5^0 x 7^0 x 3^0 x 2^0

    C = 1 x 1 x 1 x 1

    C = 1

    D = (2^3 - 3^2)^2019 + (5^2 - 3^3)^3

    D = 2^(3*2019) - 3^(2*2019) + 5^(2*3) - 3^(3*3)

    D = 2^6057 - 3^4038 + 5^6 - 3^9

    D = 2^6057 - 3^4038 - 3^9 + 5^6