Mathématiques

Question

Bonjour, Je suis actuellement bloquée sur cet exercice et je doit absolument le faire avant demain, si quelqu'un peut juste avoir le temps de jeter un coup d'œil afin de m'aider, ce serait admirable de votre part.

Merci d'avance !​
Bonjour, Je suis actuellement bloquée sur cet exercice et je doit absolument le faire avant demain, si quelqu'un peut juste avoir le temps de jeter un coup d'œi

1 Réponse

  • Réponse :

    bonsoir

    Explications étape par étape

    Un=1,5^n/(n+1)

    1) U0=1,5^0/1=1

    U1=1,5/2=0,75

    U2=1,5²/3=0,75

    U3=1,5³/4=27/32=0,84  (environ)

    U4=1,5^4/5=1,3

    On note qu'à partir du rang 2 la suite semble être croissante.

    2)1,5^n est>0 et n+1>0 donc Un>0

    U(n+1)/Un=[1,5^(n+1)/(n+2)]/1,5^n /(n+1)=[1,5^(n+1) /1,5^n]*[(n+1)/(n+2])=

    1,5(n+1)/(n+2) on multiplie les deux termes par 2 et on obtient

    U(n+1)/Un=(3n+3)/(2n+4)

    La suite Un est croissante si le rapport U(n+1)/U(n)est >1

    3) résolution de l'inéquation

    3n+3>ou=2n+4   soit n>ou=1 donc à partir de n=2 la suite est croissante.